Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virus Res ; 342: 199338, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38373599

RESUMEN

The role of aichivirus A1 (AiV-A1) in acute gastroenteritis remains controversial and in vitro data illustrating its pathogenesis in suitable human models are scarce. Here, we demonstrate that AiV-A1 isolate A846/88 replicates in ApoA1- (absorptive) and Ki-67-positive (proliferative) enterocytes in stem cell-derived human small intestinal epithelium (HIE) as well as in patient biopsy samples, but not in any of the tested human cell lines. The infection did not result in tissue damage and did not trigger type I and type III interferon (IFN) signalling, whereas the control, human coxsackievirus B3 (strain Nancy), triggered both IFNs. To investigate the tissue tropism, we infected a human tracheal/bronchial epithelium model (HTBE) with AiV-A1 isolates A846/88 and kvgh99012632/2010 and, as a control, with rhinovirus A2 (RV-A2). AiV-A1 isolate kvgh99012632/2010, but not isolate A846/88, replicated in HTBE and induced type III IFN and ISGs signalling. By using various pharmacological inhibitors, we elaborated that cellular entry of AiV-A1 depends on clathrin, dynamin, and lipid rafts and is strongly reliant on endosome acidification. Viral particles co-localised with Rab5a-positive endosomes and promoted leakage of endosomal content. Our data shed light on the early events of AiV-A1 infection and reveal that different isolates exhibit distinct tissue tropism. This supports its clinical importance as a human pathogen with the potential to evolve toward broader tissue specificity.


Asunto(s)
Bronquios , Mucosa Intestinal , Humanos , Enterocitos , Línea Celular , Clatrina
2.
Antiviral Res ; 222: 105810, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38244889

RESUMEN

Rhinoviruses (RVs) cause the common cold. Attempts at discovering small molecule inhibitors have mainly concentrated on compounds supplanting the medium chain fatty acids residing in the sixty icosahedral symmetry-related hydrophobic pockets of the viral capsid of the Rhinovirus-A and -B species. High-affinity binding to these pockets stabilizes the capsid against structural changes necessary for the release of the ss(+) RNA genome into the cytosol of the host cell. However, single-point mutations may abolish this binding. RV-B5 is one of several RVs that are naturally resistant against the well-established antiviral agent pleconaril. However, RV-B5 is strongly inhibited by the pyrazolopyrimidine OBR-5-340. Here, we report on isolation and characterization of RV-B5 mutants escaping OBR-5-340 inhibition and show that substitution of amino acid residues not only within the binding pocket but also remote from the binding pocket hamper inhibition. Molecular dynamics network analysis revealed that strong inhibition occurs when an ensemble of several sequence stretches of the capsid proteins enveloping OBR-5-340 move together with OBR-5-340. Mutations abrogating this dynamic, regardless of whether being localized within the binding pocket or distant from it result in escape from inhibition. Pyrazolo [3,4-d]pyrimidine derivatives overcoming OBR-5-340 escape of various RV-B5 mutants were identified. Our work contributes to the understanding of the properties of capsid-binding inhibitors necessary for potent and broad-spectrum inhibition of RVs.


Asunto(s)
Proteínas de la Cápside , Infecciones por Enterovirus , Humanos , Proteínas de la Cápside/metabolismo , Cápside/metabolismo , Rhinovirus/genética , Sitios de Unión , Infecciones por Enterovirus/metabolismo , Simulación de Dinámica Molecular , Mutación , Antivirales/química
3.
Viruses ; 15(4)2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37112983

RESUMEN

Rhinoviruses (RVs) are the major cause of common cold, a respiratory disease that generally takes a mild course. However, occasionally, RV infection can lead to serious complications in patients debilitated by other ailments, e.g., asthma. Colds are a huge socioeconomic burden as neither vaccines nor other treatments are available. The many existing drug candidates either stabilize the capsid or inhibit the viral RNA polymerase, the viral proteinases, or the functions of other non-structural viral proteins; however, none has been approved by the FDA. Focusing on the genomic RNA as a possible target for antivirals, we asked whether stabilizing RNA secondary structures might inhibit the viral replication cycle. These secondary structures include G-quadruplexes (GQs), which are guanine-rich sequence stretches forming planar guanine tetrads via Hoogsteen base pairing with two or more of them stacking on top of each other; a number of small molecular drug candidates increase the energy required for their unfolding. The propensity of G-quadruplex formation can be predicted with bioinformatics tools and is expressed as a GQ score. Synthetic RNA oligonucleotides derived from the RV-A2 genome with sequences corresponding to the highest and lowest GQ scores indeed exhibited characteristics of GQs. In vivo, the GQ-stabilizing compounds, pyridostatin and PhenDC3, interfered with viral uncoating in Na+ but not in K+-containing phosphate buffers. The thermostability studies and ultrastructural imaging of protein-free viral RNA cores suggest that Na+ keeps the encapsulated genome more open, allowing PDS and PhenDC3 to diffuse into the quasi-crystalline RNA and promote the formation and/or stabilization of GQs; the resulting conformational changes impair RNA unraveling and release from the virion. Preliminary reports have been published.


Asunto(s)
G-Cuádruplex , Rhinovirus , Humanos , Rhinovirus/genética , Oligonucleótidos , ARN Viral/genética , Emparejamiento Base
4.
J Virus Erad ; 8(4): 100305, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36514716

RESUMEN

Rhinoviruses (RVs) and coronaviruses (CoVs) upregulate host cell metabolic pathways such as glycolysis to meet their bioenergetic demands for rapid multiplication. Using the glycolysis inhibitor 2-deoxy-d-glucose (2-DG), we assessed the dose-dependent inhibition of viral replication of minor- and major-receptor group RVs in epithelial cells. 2-DG disrupted RV infection cycle by inhibiting template negative-strand as well as genomic positive-strand RNA synthesis, resulting in less progeny virus and RV-mediated cell death. Assessment of 2-DG's intracellular kinetics revealed that after a short-exposure to 2-DG, the active intermediate, 2-DG6P, is stored intracellularly for several hours. Finally, we confirmed the antiviral effect of 2-DG on pandemic SARS-CoV-2 and showed for the first time that it also reduces replication of endemic human coronaviruses. These results provide further evidence that 2-DG could be used as a broad-spectrum antiviral.

5.
Viruses ; 13(9)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34578365

RESUMEN

Rhinoviruses (RVs) are the main cause of recurrent infections with rather mild symptoms characteristic of the common cold. Nevertheless, RVs give rise to enormous numbers of absences from work and school and may become life-threatening in particular settings. Vaccination is jeopardised by the large number of serotypes eliciting only poorly cross-neutralising antibodies. Conversely, antivirals developed over the years failed FDA approval because of a low efficacy and/or side effects. RV species A, B, and C are now included in the fifteen species of the genus Enteroviruses based upon the high similarity of their genome sequences. As a result of their comparably low pathogenicity, RVs have become a handy model for other, more dangerous members of this genus, e.g., poliovirus and enterovirus 71. We provide a short overview of viral proteins that are considered potential drug targets and their corresponding drug candidates. We briefly mention more recently identified cellular enzymes whose inhibition impacts on RVs and comment novel approaches to interfere with infection via aggregation, virus trapping, or preventing viral access to the cell receptor. Finally, we devote a large part of this article to adding the viral RNA genome to the list of potential drug targets by dwelling on its structure, folding, and the still debated way of its exit from the capsid. Finally, we discuss the recent finding that G-quadruplex stabilising compounds impact on RNA egress possibly via obfuscating the unravelling of stable secondary structural elements.


Asunto(s)
Antivirales/farmacología , ARN Viral/efectos de los fármacos , Rhinovirus/efectos de los fármacos , Aminoquinolinas/farmacología , Animales , Cápside/metabolismo , Proteínas de la Cápside/genética , Enterovirus/genética , Infecciones por Enterovirus/virología , Genoma Viral/efectos de los fármacos , Humanos , Ácidos Picolínicos/farmacología , Poliovirus/genética , Proteínas no Estructurales Virales/efectos de los fármacos , Proteínas Virales/genética
6.
Commun Biol ; 3(1): 537, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994533

RESUMEN

Rhinoviruses cause the common cold. They are icosahedral, built from sixty copies each of the capsid proteins VP1 through VP4 arranged in a pseudo T = 3 lattice. This shell encases a ss(+) RNA genome. Three-D classification of single and oligomeric asymmetric units computationally excised from a 2.9 Å cryo-EM density map of rhinovirus A89, showed that VP4 and the N-terminal extension of VP1 adopt different conformations within the otherwise identical 3D-structures. Analysis of up to sixty classes of single subunits and of six classes of subunit dimers, trimers, and pentamers revealed different orientations of the amino acid residues at the interface with the RNA suggesting that local asymmetry is dictated by disparities of the interacting nucleotide sequences. The different conformations escape detection by 3-D structure determination of entire virions with the conformational heterogeneity being only indicated by low density. My results do not exclude that the RNA follows a conserved assembly mechanism, contacting most or all asymmetric units in a specific way. However, as suggested by the gradual loss of asymmetry with increasing oligomerization and the 3D-structure of entire virions reconstructed by using Euler angles selected in the classification of single subunits, RNA path and/or folding likely differ from virion to virion.


Asunto(s)
Proteínas de la Cápside/metabolismo , Resfriado Común/virología , ARN Viral/metabolismo , Rhinovirus/metabolismo , Sitios de Unión , Proteínas de la Cápside/ultraestructura , Microscopía por Crioelectrón , Genoma Viral , Conformación de Ácido Nucleico , Estructura Terciaria de Proteína , ARN Viral/ultraestructura , Rhinovirus/genética , Rhinovirus/ultraestructura , Virión/metabolismo , Virión/ultraestructura
7.
Viruses ; 12(7)2020 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-32635420

RESUMEN

The neutrophil extracellular trap (ET) is a eukaryotic host defense machinery that operates by capturing and concentrating pathogens in a filamentous network manufactured by neutrophils and made of DNA, histones, and many other components. Respiratory virus-induced ETs are involved in tissue damage and impairment of the alveolar-capillary barrier, but they also aid in fending off infection. We found that the small organic compound pyridostatin (PDS) forms somewhat similar fibrillary structures in Tris buffer in a concentration-dependent manner. Common cold viruses promote this process and become entrapped in the network, decreasing their infectivity by about 70% in tissue culture. We propose studying this novel mechanism of virus inhibition for its utility in preventing viral infection.


Asunto(s)
Aminoquinolinas/farmacología , Antivirales/farmacología , Ácidos Picolínicos/farmacología , Rhinovirus/efectos de los fármacos , Trometamina/química , Células Cultivadas , Resfriado Común/prevención & control , Resfriado Común/virología , Trampas Extracelulares/fisiología , Células HeLa , Humanos , Microscopía Electrónica de Transmisión , Neutrófilos , Rhinovirus/ultraestructura
8.
Front Microbiol ; 11: 1442, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32676065

RESUMEN

Thermal shift assays measure the stability of macromolecules and macromolecular assemblies as a function of temperature. The Particle Stability Thermal Release Assay (PaSTRy) of picornaviruses is based on probes becoming strongly fluorescent upon binding to hydrophobic patches of the protein capsid (e.g., SYPRO Orange) or to the viral RNA genome (e.g., SYTO-82) that become exposed upon heating virus particles. PaSTRy has been exploited for studying the stability of viral mutants, viral uncoating, and the effect of capsid-stabilizing compounds. While the results were usually robust, the thermal shift assay with SYPRO Orange is sensitive to surfactants and EDTA and failed at least to correctly report the effect of excipients on an inactivated poliovirus 3 vaccine. Furthermore, interactions between the probe and capsid-binding antivirals as well as mutual competition for binding sites cannot be excluded. To overcome these caveats, we assessed differential scanning fluorimetry with a nanoDSF device as a label-free alternative. NanoDSF monitors the changes in the intrinsic tryptophan fluorescence (ITF) resulting from alterations of the 3D-structure of proteins as a function of the temperature. Using rhinovirus A2 as a model, we demonstrate that nanoDFS is well suited for recording the temperature-dependence of conformational changes associated with viral uncoating with minute amounts of sample. We compare it with orthogonal methods and correlate the increase in viral RNA exposure with PaSTRy measurements. Importantly, nanoDSF correctly identified the thermal stabilization of RV-A2 by pleconaril, a prototypic pocket-binding antiviral compound. NanoDFS is thus a label-free, high throughput-customizable, attractive alternative for the discovery of capsid-binding compounds impacting on viral stability.

9.
Proc Natl Acad Sci U S A ; 116(38): 19109-19115, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31462495

RESUMEN

Viral inhibitors, such as pleconaril and vapendavir, target conserved regions in the capsids of rhinoviruses (RVs) and enteroviruses (EVs) by binding to a hydrophobic pocket in viral capsid protein 1 (VP1). In resistant RVs and EVs, bulky residues in this pocket prevent their binding. However, recently developed pyrazolopyrimidines inhibit pleconaril-resistant RVs and EVs, and computational modeling has suggested that they also bind to the hydrophobic pocket in VP1. We studied the mechanism of inhibition of pleconaril-resistant RVs using RV-B5 (1 of the 7 naturally pleconaril-resistant rhinoviruses) and OBR-5-340, a bioavailable pyrazolopyrimidine with proven in vivo activity, and determined the 3D-structure of the protein-ligand complex to 3.6 Å with cryoelectron microscopy. Our data indicate that, similar to other capsid binders, OBR-5-340 induces thermostability and inhibits viral adsorption and uncoating. However, we found that OBR-5-340 attaches closer to the entrance of the pocket than most other capsid binders, whose viral complexes have been studied so far, showing only marginal overlaps of the attachment sites. Comparing the experimentally determined 3D structure with the control, RV-B5 incubated with solvent only and determined to 3.2 Å, revealed no gross conformational changes upon OBR-5-340 binding. The pocket of the naturally OBR-5-340-resistant RV-A89 likewise incubated with OBR-5-340 and solved to 2.9 Å was empty. Pyrazolopyrimidines have a rigid molecular scaffold and may thus be less affected by a loss of entropy upon binding. They interact with less-conserved regions than known capsid binders. Overall, pyrazolopyrimidines could be more suitable for the development of new, broadly active inhibitors.


Asunto(s)
Antivirales/metabolismo , Cápside/metabolismo , Microscopía por Crioelectrón/métodos , Farmacorresistencia Viral , Oxadiazoles/farmacología , Rhinovirus/metabolismo , Proteínas Virales/química , Antivirales/farmacología , Sitios de Unión , Cápside/efectos de los fármacos , Cápside/ultraestructura , Células HeLa , Humanos , Modelos Moleculares , Estructura Molecular , Oxazoles , Infecciones por Picornaviridae/tratamiento farmacológico , Infecciones por Picornaviridae/metabolismo , Infecciones por Picornaviridae/virología , Unión Proteica , Conformación Proteica , Rhinovirus/efectos de los fármacos , Rhinovirus/ultraestructura , Relación Estructura-Actividad , Proteínas Virales/genética , Proteínas Virales/metabolismo
10.
PLoS Pathog ; 14(8): e1007203, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30080883

RESUMEN

In nearly all picornaviruses the precursor of the smallest capsid protein VP4 undergoes co-translational N-terminal myristoylation by host cell N-myristoyltransferases (NMTs). Curtailing this modification by mutation of the myristoylation signal in poliovirus has been shown to result in severe assembly defects and very little, if any, progeny virus production. Avoiding possible pleiotropic effects of such mutations, we here used pharmacological abrogation of myristoylation with the NMT inhibitor DDD85646, a pyrazole sulfonamide originally developed against trypanosomal NMT. Infection of HeLa cells with coxsackievirus B3 in the presence of this drug decreased VP0 acylation at least 100-fold, resulting in a defect both early and late in virus morphogenesis, which diminishes the yield of viral progeny by about 90%. Virus particles still produced consisted mainly of provirions containing RNA and uncleaved VP0 and, to a substantially lesser extent, of mature virions with cleaved VP0. This indicates an important role of myristoylation in the viral maturation cleavage. By electron microscopy, these RNA-filled particles were indistinguishable from virus produced under control conditions. Nevertheless, their specific infectivity decreased by about five hundred fold. Since host cell-attachment was not markedly impaired, their defect must lie in the inability to transfer their genomic RNA into the cytosol, likely at the level of endosomal pore formation. Strikingly, neither parechoviruses nor kobuviruses are affected by DDD85646, which appears to correlate with their native capsid containing only unprocessed VP0. Individual knockout of the genes encoding the two human NMT isozymes in haploid HAP1 cells further demonstrated the pivotal role for HsNMT1, with little contribution by HsNMT2, in the virus replication cycle. Our results also indicate that inhibition of NMT can possibly be exploited for controlling the infection by a wide spectrum of picornaviruses.


Asunto(s)
Aciltransferasas/metabolismo , Aminopiridinas/farmacología , Enterovirus/efectos de los fármacos , Enterovirus/fisiología , Sulfonamidas/farmacología , Ensamble de Virus/fisiología , Proteínas de la Cápside/metabolismo , Infecciones por Coxsackievirus/metabolismo , Células HeLa , Humanos , Virión/efectos de los fármacos , Virión/metabolismo , Ensamble de Virus/efectos de los fármacos
11.
Proc Natl Acad Sci U S A ; 115(30): E7158-E7165, 2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-29987044

RESUMEN

Rhinoviruses (RVs) are responsible for the majority of upper airway infections; despite their high prevalence and the resulting economic burden, effective treatment is lacking. We report here that RV induces metabolic alterations in host cells, which offer an efficient target for antiviral intervention. We show that RV-infected cells rapidly up-regulate glucose uptake in a PI3K-dependent manner. In parallel, infected cells enhance the expression of the PI3K-regulated glucose transporter GLUT1. In-depth metabolomic analysis of RV-infected cells revealed a critical role of glucose mobilization from extracellular and intracellular pools via glycogenolysis for viral replication. Infection resulted in a highly anabolic state, including enhanced nucleotide synthesis and lipogenesis. Consistently, we observed that glucose deprivation from medium and via glycolysis inhibition by 2-deoxyglucose (2-DG) potently impairs viral replication. Metabolomic analysis showed that 2-DG specifically reverts the RV-induced anabolic reprogramming. In addition, treatment with 2-DG inhibited RV infection and inflammation in a murine model. Thus, we demonstrate that the specific metabolic fingerprint of RV infection can be used to identify new targets for therapeutic intervention.


Asunto(s)
Infecciones por Picornaviridae/metabolismo , Rhinovirus/fisiología , Replicación Viral/fisiología , Animales , Desoxiglucosa/farmacología , Femenino , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Lipogénesis/efectos de los fármacos , Lipogénesis/genética , Ratones , Nucleótidos/biosíntesis , Nucleótidos/genética , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Infecciones por Picornaviridae/tratamiento farmacológico , Infecciones por Picornaviridae/genética , Infecciones por Picornaviridae/patología , Replicación Viral/efectos de los fármacos
12.
J Virol Methods ; 251: 15-21, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28966037

RESUMEN

For vaccine development, 3D-structure determination, direct fluorescent labelling, and numerous other studies, homogeneous virus preparations of high purity are essential. Working with human rhinoviruses (RVs), members of the picornavirus family and the main cause of generally mild respiratory infections, we noticed that our routine preparations appeared highly pure on analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), exclusively showing the four viral capsid proteins (VPs). However, the preparations turned out to contain substantial amounts of contaminating material when analyzed by orthogonal analytical methods including capillary zone electrophoresis, nano electrospray gas-phase electrophoretic mobility molecular analysis (nES GEMMA), and negative stain transmission electron microscopy (TEM). Because these latter analyses are not routine to many laboratories, the above contaminations might remain unnoticed and skew experimental results. By using human rhinovirus serotype A2 (RV-A2) as example we report monolithic anion-exchange chromatography (AEX) as a last polishing step in the purification and demonstrate that it yields infective, highly pure, virus (RV-A2 in the respective fractions was confirmed by peptide mass fingerprinting) devoid of foreign material as judged by the above criteria.


Asunto(s)
Cromatografía por Intercambio Iónico/métodos , Rhinovirus/aislamiento & purificación , Virología/métodos
13.
Nature ; 550(7674): 114-118, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28953874

RESUMEN

The ability to directly uncover the contributions of genes to a given phenotype is fundamental for biology research. However, ostensibly homogeneous cell populations exhibit large clonal variance that can confound analyses and undermine reproducibility. Here we used genome-saturated mutagenesis to create a biobank of over 100,000 individual haploid mouse embryonic stem (mES) cell lines targeting 16,970 genes with genetically barcoded, conditional and reversible mutations. This Haplobank is, to our knowledge, the largest resource of hemi/homozygous mutant mES cells to date and is available to all researchers. Reversible mutagenesis overcomes clonal variance by permitting functional annotation of the genome directly in sister cells. We use the Haplobank in reverse genetic screens to investigate the temporal resolution of essential genes in mES cells, and to identify novel genes that control sprouting angiogenesis and lineage specification of blood vessels. Furthermore, a genome-wide forward screen with Haplobank identified PLA2G16 as a host factor that is required for cytotoxicity by rhinoviruses, which cause the common cold. Therefore, clones from the Haplobank combined with the use of reversible technologies enable high-throughput, reproducible, functional annotation of the genome.


Asunto(s)
Bancos de Muestras Biológicas , Genómica/métodos , Haploidia , Células Madre Embrionarias de Ratones/metabolismo , Mutación , Animales , Vasos Sanguíneos/citología , Linaje de la Célula/genética , Resfriado Común/genética , Resfriado Común/virología , Genes Esenciales/genética , Pruebas Genéticas , Células HEK293 , Homocigoto , Humanos , Ratones , Células Madre Embrionarias de Ratones/citología , Neovascularización Fisiológica/genética , Fosfolipasas A2 Calcio-Independiente/genética , Fosfolipasas A2 Calcio-Independiente/metabolismo , Rhinovirus/patogenicidad
14.
PLoS Pathog ; 13(9): e1006643, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28915259

RESUMEN

Antibody-dependent enhancement of viral infection is a well-described phenomenon that is based on the cellular uptake of infectious virus-antibody complexes following their interaction with Fcγ receptors expressed on myeloid cells. Here we describe a novel mechanism of antibody-mediated enhancement of infection by a flavivirus (tick-borne encephalitis virus) in transformed and primary human cells, which is independent of the presence of Fcγ receptors. Using chemical cross-linking and immunoassays, we demonstrate that the monoclonal antibody (mab) A5, recognizing an epitope at the interface of the dimeric envelope protein E, causes dimer dissociation and leads to the exposure of the fusion loop (FL). Under normal conditions of infection, this process is triggered only after virus uptake by the acidic pH in endosomes, resulting in the initiation of membrane fusion through the interaction of the FL with the endosomal membrane. Analysis of virus binding and cellular infection, together with inhibition by the FL-specific mab 4G2, indicated that the FL, exposed after mab A5- induced dimer-dissociation, mediated attachment of the virus to the plasma membrane also at neutral pH, thereby increasing viral infectivity. Since antibody-induced enhancement of binding was not only observed with cells but also with liposomes, it is likely that increased infection was due to FL-lipid interactions and not to interactions with cellular plasma membrane proteins. The novel mechanism of antibody-induced infection enhancement adds a new facet to the complexity of antibody interactions with flaviviruses and may have implications for yet unresolved effects of polyclonal antibody responses on biological properties of these viruses.


Asunto(s)
Anticuerpos Antivirales/inmunología , Acrecentamiento Dependiente de Anticuerpo , Virus de la Encefalitis Transmitidos por Garrapatas/inmunología , Infecciones por Flavivirus/virología , Flavivirus/inmunología , Anticuerpos Monoclonales/inmunología , Acrecentamiento Dependiente de Anticuerpo/inmunología , Flavivirus/aislamiento & purificación , Humanos , Liposomas/inmunología , Proteínas del Envoltorio Viral/metabolismo
15.
Viruses ; 9(4)2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28368306

RESUMEN

Of the more than 150 human rhinovirus (RV) serotypes, 89 utilize intercellular adhesion molecule-1 (ICAM-1) for cell entry. These belong either to species A or B. We recently demonstrated that RV-B14 and RV-A89, despite binding this same receptor, are routed into distinct endosomal compartments for release of their RNA into the cytosol. To gain insight into the underlying mechanism we now comparatively investigate the port of entry, temperature-dependence of uncoating, and intracellular routing of RV-B3, RV-B14, RV-A16, and RV-A89 in HeLa cells. The effect of various drugs blocking distinct stages on the individual pathways was determined via comparing the number of infected cells in a TissueFaxs instrument. We found that RV-B14 and RV-A89 enter via clathrin-, dynamin-, and cholesterol-dependent pathways, as well as by macropinocytosis. Drugs interfering with actin function similarly blocked entry of all four viruses, indicating their dependence on a dynamic actin network. However, uniquely, RV-A89 was able to produce progeny when internalized at 20 °C followed by neutralizing the endosomal pH and further incubation at 37 °C. Blocking dynein-dependent endosomal transport prevented uncoating of RV-A16 and RV-A89, but not of RV-B3 and RV-B14, indicative for routing of RV-A16 and RV-A89 into the endocytic recycling compartment for uncoating. Our results call for caution when developing drugs aimed at targeting entry or intracellular trafficking of all rhinovirus serotypes.


Asunto(s)
Molécula 1 de Adhesión Intercelular/metabolismo , Receptores Virales/metabolismo , Rhinovirus/fisiología , Acoplamiento Viral , Internalización del Virus , Desencapsidación Viral , Transporte Biológico , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Temperatura
17.
J Virol ; 90(17): 7934-42, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27334586

RESUMEN

UNLABELLED: Human rhinovirus A89 (HRV-A89) and HRV-B14 bind to and are internalized by intercellular adhesion molecule 1 (ICAM-1); as demonstrated earlier, the RNA genome of HRV-B14 penetrates into the cytoplasm from endosomal compartments of the lysosomal pathway. Here, we show by immunofluorescence microscopy that HRV-A89 but not HRV-B14 colocalizes with transferrin in the endocytic recycling compartment (ERC). Applying drugs differentially interfering with endosomal recycling and with the pathway to lysosomes, we demonstrate that these two major-group HRVs productively uncoat in distinct endosomal compartments. Overexpression of constitutively active (Rab11-GTP) and dominant negative (Rab11-GDP) mutants revealed that uncoating of HRV-A89 depends on functional Rab11. Thus, two ICAM-1 binding HRVs are routed into distinct endosomal compartments for productive uncoating. IMPORTANCE: Based on similarity of their RNA genomic sequences, the more than 150 currently known common cold virus serotypes were classified as species A, B, and C. The majority of HRV-A viruses and all HRV-B viruses use ICAM-1 for cell attachment and entry. Our results highlight important differences of two ICAM-1 binding HRVs with respect to their intracellular trafficking and productive uncoating; they demonstrate that serotypes belonging to species A and B, but entering the cell via the same receptors, direct the endocytosis machinery to ferry them along distinct pathways toward different endocytic compartments for uncoating.


Asunto(s)
Endosomas/virología , Molécula 1 de Adhesión Intercelular/metabolismo , Rhinovirus/fisiología , Acoplamiento Viral , Desencapsidación Viral , Células HeLa , Humanos , Microscopía Fluorescente , Proteínas de Unión al GTP rab/metabolismo
18.
Mol Cell Pediatr ; 3(1): 21, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27251607

RESUMEN

About 150 human rhinovirus serotypes are responsible for more than 50 % of recurrent upper respiratory infections. Despite having similar 3D structures, some bind members of the low-density lipoprotein receptor family, some ICAM-1, and some use CDHR3 for host cell infection. This is also reflected in the pathways exploited for cellular entry. We found that even rhinovirus serotypes binding the same receptor can travel along different endocytic pathways and release their RNA genome into the cytosol at different locations. How this may account for distinct immune responses elicited by various rhinoviruses and the observed symptoms of the common cold is briefly discussed.

19.
Wien Med Wochenschr ; 166(7-8): 211-26, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27174165

RESUMEN

For infection, viruses deliver their genomes into the host cell. These nucleic acids are usually tightly packed within the viral capsid, which, in turn, is often further enveloped within a lipid membrane. Both protect them against the hostile environment. Proteins and/or lipids on the viral particle promote attachment to the cell surface and internalization. They are likewise often involved in release of the genome inside the cell for its use as a blueprint for production of new viruses. In the following, I shall cursorily discuss the early more general steps of viral infection that include receptor recognition, uptake into the cell, and uncoating of the viral genome. The later sections will concentrate on human rhinoviruses, the main cause of the common cold, with respect to the above processes. Much of what is known on the underlying mechanisms has been worked out by Renate Fuchs at the Medical University of Vienna.


Asunto(s)
Resfriado Común/fisiopatología , Resfriado Común/virología , Rhinovirus/fisiología , Genoma Viral/genética , Humanos , Lisosomas/fisiología , Rhinovirus/genética , Acoplamiento Viral , Internalización del Virus , Replicación Viral/genética , Replicación Viral/fisiología , Desencapsidación Viral/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...